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1. Introduction

Many brane-type solutions have been constructed for simple truncations of supergravity

theories to the form (see, for instance, [1])

S =

∫

dDx
√−g

( 1

2κ2
D

R− 1

2
(∂φ)2 − 1

2n!
eaφF 2

n

)

, (1.1)

where R is the Ricci-scalar, κ2
D is the D-dimensional gravitational coupling, φ is a scalar

field (the dilaton) and Fn is the field strength of some (n− 1)-form, Fn = dAn−1 if n > 0.

For the special case n = 0 we consider F 2
n to be a cosmological term (scalar potential).

The parameter a is fixed and is called the dilaton coupling.

The equations of motion derived from this action admit electrically charged (n − 2)-

branes and magnetically charged (D − n − 2)-branes. A brane solution can be stationary

or time-dependent. The metric of a stationary p-brane is given by

ds2D = e2A(r)ηµνdx
µdxν + e2B(r)dr2 + e2C(r)dΣ2

k , (1.2)

where η is the usual Minkowski metric in p+1 dimensions, η = diag(−,+, . . . ,+) and dΣ2
k is

the metric of a d-dimensional maximally symmetric space with unit curvature k = −1, 0, 1,

such that the Ricci scalar is given by Rd = kd(d− 1). When k = 1 the solutions possess a

rotational symmetry and can be asymptotically flat (in contrast to k = −1). For D = 10

and specific values of a and n the solutions correspond to D-branes in string theory.

The metric of the time-dependent branes is similar

ds2D = e2A(t)δµνdxµdxν − e2B(t)dt2 + e2C(r)dΣ2
k , (1.3)
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where δ is the usual flat Euclidean metric in p + 1 dimensions, δ = diag(+,+ . . .+).

In the k = −1 case the transverse space possesses a Lorentzian symmetry and can be

asymptotically flat (in contrast to k = +1 solutions). These solutions are the spacelike

branes (S-branes) introduced by Gutperle and Strominger [2], who conjectured that such

branes correspond to specific time-dependent processes in string theory.

From now on we shall call the stationary branes with spherical slicing (k = +1) timelike

branes and the time-dependent branes with hyperbolic slicing (k = −1) spacelike branes.

All the other possible slicings are also covered here, but we choose to highlight only these

two cases.

It has been known for a long time that particular timelike p-brane solutions of super-

gravity preserve some fraction of supersymmetry. Practically this means that the solutions

fulfill some first-order differential equations that arise from demanding the supersymmetry

transformations to be consistently satisfied for vanishing fermions. Such first-order equa-

tions have become known as Bogomol’nyi or BPS equations, after Bogomol’nyi’s [3], and

Prasad and Sommerfield’s [4] work on first-order equations and exact solutions for mag-

netic monopoles in the Yang-Mills-Higgs theory. It was then later shown that this limit is

intimately linked to the preserved supersymmetry of solitons in supersymmetric theories

by Witten and Olive [5]. The term BPS equation is now generically used for equations

of motion that are inferred by rewriting the action as a sum of squares. Supersymmetric

solutions, in general, belong to this class. Stationary non-extremal and time-dependent

solutions cannot preserve supersymmetry in ordinary supergravity theories. Naively one

therefore expects that such solutions cannot be found from BPS equations, but rather by

solving the full second-order equations of motion.

To our knowledge there are three instances in the literature where it has been shown

that this view is too pessimistic:

1. Not all extremal black hole solutions of supergravity have to be supersymmetric.

It turns out that many non-supersymmetric but extremal solutions fulfill first-order

equations in a given supergravity theory (see for instance [6 – 8]). More surprisingly,

Miller et. al have shown that the non-extremal Reissner-Nordström black hole solution

of Einstein-Maxwell theory can be found from first-order equations [9] by a clever

rewriting of the action as a sum of squares à la Bogomol’nyi. The method of [9] is

the main tool for the present paper.

2. Many stationary domain wall solutions that do not preserve any supersymmetry

have been shown to allow for first order-equations by the construction of a fake

superpotential [10 – 12]. The domain walls in question are solutions to the following

Lagrangian

L =
√−g

(

R− 1

2
Gij(Φ)gµν∂µΦi∂νΦ

j − V (Φ)
)

(1.4)

where Φi are scalars fields, Gij(Φ) is the metric on the target space and V (Φ) is the

– 2 –
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scalar potential. The metric Ansatz for a flat domain wall is1

ds2 = e2B(z)dz2 + e2A(z)ηabdx
adxb , (1.5)

where ηab is diag(−,+, . . . ,+). The high degree of symmetry of this Ansatz is only

consistent when the fields that support the solution depend solely on the z-coordinate

i.e. Φi = Φi(z). We then suppose that a scalar function W (Φ) exists such that

V =
1

2
Gij∂iW∂jW − D − 1

4(D − 2)
W 2 , (1.6)

which allows the action to be written as a sum of squares (neglecting boundary

terms) [13]

S =

∫

dz e(D−1)A+B

{

(D − 1)

4(D − 2)

[

W − 2(D− 2)e−BA′
]2 − 1

2

∣

∣

∣

∣

∣

∣
e−B(Φi)′ +Gij∂jW

∣

∣

∣

∣

∣

∣

2
}

,

(1.7)

where a prime denotes a derivative with respect to z. Solutions are obtained when

each square in the action is zero. If W is a superpotential of some supersymmetric

theory, these first-order equations are the standard BPS equations for domain walls

that would arise by demanding that the supersymmetry variations are satisfied for

vanishing fermions. However, for every W that obeys (1.6) we can find a correspond-

ing DW-solution. If W is not related to the quantity appearing in the supersymmetry

transformations the resulting solutions are called fake supersymmetric.

3. FLRW-cosmologies are very similar to domain walls [14 – 16], the difference in metrics

being given by a few signs

ds2 = −e2B(t)dt2 + e2A(t)δabdx
adxb . (1.8)

When the relation (1.6) is changed by an overall minus-sign

V = −1

2
Gij∂iW∂jW +

D − 1

4(D − 2)
W 2 , (1.9)

the same first-order equations for domain walls exist for cosmologies, where now the

primes indicate derivatives with respect to time. These relations have become known

as pseudo-BPS conditions [15, 16] (see also [17, 18] for the first-order framework in

cosmology). As for domain walls one readily checks that these first-order equations

arise from the fact that the action can be written as a sum of squares [19]. The

structure underlying the existence of these first-order equations can be understood

from Hamilton-Jacobi theory [20 – 22].2

1For simplicity we only discuss flat cosmologies and flat domain walls.
2In ordinary supergravity theories the pseudo-BPS relations cannot be related to supersymmetry preser-

vation. However, in the case of supergravity theories with ‘wrong sign’ kinetic terms the pseudo-BPS

relations are related to true supersymmetry [23 – 27]. In this paper we shall consider ordinary supergravity

theories and therefore pseudo-BPS conditions are not related to supersymmetry. Practically this means

that we have first-order equations which can be understood to originate from a Bogomol’nyi rewriting of

the action.
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The examples given above (1-3) are only a subset of the different p-branes that exist,

namely timelike 0-branes in D = 4 (the RN black holes) and (D − 2)-branes (domain

walls and FLRW-cosmologies). It is the aim of this paper to understand in general when

stationary and time-dependent p-branes in arbitrary dimensions can be found from BPS

equations.

One of the main subtleties that arises in this generalisation is that there exist two kinds

of black deformations of timelike p-branes which coincide for the special case of black holes

in four dimensions. For this reason the example treated by Miller et. al. [9] is not completely

representative. Secondly, for time-dependent solutions, it has yet to be understood if the

concept of pseudo-supersymmetry could be extended beyond cosmologies (time-dependent

(D− 2)-branes) to general time-dependent p-branes (see [25, 27] for initial progress in this

direction).

The rest of the paper is organized as follows. In section 2 we consider Einstein-

Maxwell theory and repeat the construction of the first-order equations for the non-

extremal Reissner-Nordström black hole. We immediately show that the same technique

allows one to rederive the S0-brane solution of Einstein-Maxwell theory [2]. In section 3

we discuss the special case of (−1)-branes in arbitrary dimensions. In section 4 we explain

how the BPS equations for the (−1)-branes imply the BPS equations for general p-branes

in arbitrary dimensions via an uplifting procedure. We then discuss the issue of different

black deformations in section 5 and finish with conclusions in section 6.

2. Four-dimensional Einstein-Maxwell theory

Einstein-Maxwell theory in four dimensions is described by the action

S =

∫

d4x
√−g

( 1

2κ2
R− 1

4
F 2
)

, (2.1)

and has electric and magnetic 0-branes solutions. Following [9] we shall choose a particular

Ansatz for the 0-brane metric which turns out to be useful

ds2 = −ǫe2A(u)dz2 + e−2A(u)+2B(u)
(

ǫe2C(u)du2 + dΣ2
k

)

. (2.2)

If ǫ = +1 then z is time z = t and the metric is static. For spherical slicings (k = +1)

this is the appropriate Ansatz for a black hole, where u is then some function of the

familiar radial coordinate r. When ǫ = −1 the metric is time-dependent and for hyperbolic

slicings (k = −1) this is the appropriate Ansatz for an S0-brane [2] with a one-dimensional

Euclidean worldvolume labelled by z, and u is some function of the time-coordinate τ used

in the Milne patch of Minkowski spacetime. The general Ricci scalar is given by

R = 2 ǫ e2(A−B−C)
(

Ä− Ȧ2 + ȦḂ − ȦĊ − 2B̈ + 2ḂĊ − Ḃ2
)

+ 2ke2(A−B) , (2.3)

where a dot indicates a derivative with respect to u.

For electrical solutions, the Maxwell and Bianchi equations are solved by

Fuz = Qe2A−B+C . (2.4)
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Plugging the Ansätze (2.2) and (2.4) into the Einstein field equations derived

from (2.1), one can ask whether the resulting second-order equations of motion in the

one variable u can be interpreted as field equations for A,B and C derived from a one-

dimensional effective action. It is straightforward to see that the equations of motion can

be obtained by varying the following action

S =

∫

du eB−C
(

2Ḃ2 − 2Ȧ2 + 2ǫ ke2C − ǫ κ2Q2e2(A−B+C)
)

. (2.5)

This action cannot be obtained from direct substitution of the Ansätze into the four-dimen-

sional action as the sign of the resulting Q2-term would be wrong. This sign discrepancy

does not appear for purely magnetic solutions, for which the Ansätze can be plugged into

the action consistently. We discuss this point in detail in appendix A and refer to [28] for

a careful derivation of the black hole effective action in a more general setting.

The field C does not appear with a derivative in the action and is therefore not a

propagating degree of freedom. This was to be expected since C is related to the re-

parametrization freedom of u. The field C acts as a Lagrange multiplier enforcing the

following constraint

2Ḃ2 − 2Ȧ2 − 2ǫ ke2C + ǫ κ2Q2e2(A−B+C) = 0 . (2.6)

As long as this contraint is satisfied we are free to pick a gauge choice for C as we like. In

the following we choose the gauge B = C.

It turns out that it is easy to generalize the Bogomol’nyi bound found in [9] to include

both stationary and time-dependent configurations with arbitrary slicing of the transverse

space k = 0,±1. The action (2.5) is, up to total derivatives, equivalent to

S =

∫

du 2

(

Ḃ +
√

ǫke2B + β2
1

)2

− 2

(

Ȧ+

√

ǫ
κ2

2
Q2e2A + β2

2

)2

, (2.7)

where β1 and β2 are constants. The BPS equations are

Ḃ = −
√

ǫke2B + β2
1 , Ȧ = −

√

ǫ
κ2

2
Q2e2A + β2

2 . (2.8)

The constraint (2.6) implies that β2
1 = β2

2 ≡ β2. Note that for time-dependent solutions

with charge (ǫ = −1, Q 6= 0) the limit of β → 0 does not exist, while for Q = 0 the limit

only exists for k = −1. The BPS equations are all of the form

Ḋ± = −
√

β2 ±K2e2D± , (2.9)

where K is a constant, depending on the case under consideration. The solutions to these

equations are given by

e−D+ =
K

β
sinh(βu+ c+) , e−D− =

K

β
cosh(βu+ c−) , (2.10)

where c± are constants of integration. In the extremal limit β → 0 the solution becomes

e−D+ = e−D− = Ku+ c.

– 5 –
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Rediscovering Reissner-Nordström black holes. For the black hole Ansatz (ǫ =

+1 , k = +1) it was shown in [9] that solving the BPS equation described above leads

to the non-extremal Reissner-Nordström solutions. We shall now quickly review this for

completeness, and draw attention to some further subtleties.

The solutions of the first-order equations (2.8) are

e−A =
Qκ√
2β

sinh(βu+ ca) , e−B =
1

β
sinhβu , (2.11)

where we put the integration constant in the solution for B to zero by shifting the origin

of the u-axis, leading to the following metric

ds2 = − 2β2

Q2κ2 sinh2(βu+ ca)
dt2 +

β2κ2Q2 sinh2(βu+ ca)

2 sinh4 βu
du2 +

κ2Q2 sinh2(βu+ ca)

2 sinh2 βu
dΩ2

2 .

(2.12)

We can identify the radial coordinate r2 as the function in front of dΩ2
2. In order to obtain

the standard form of the Reissner-Nordström solution, one has to perform the following

coordinate transformation:

r =
κQ sinh(βu+ ca)√

2 sinhβu
, τ =

√
2β

κQ sinh ca
t , (2.13)

such that the solution takes the form

ds2 = −H(r)dτ2 +H(r)−1dr2 + r2dΩ2
2 , Fτr = −Q

r2
, (2.14)

where

H(r) = 1 − 2κQ cosh ca√
2r

+
κ2Q2

2r2
. (2.15)

It is then clear that the ADM mass corresponds to M = κQ cosh ca/
√

2. Note that for

cosh ca = 1, the above solution reduces to the extreme Reissner-Nordström metric, implying

that cosh ca is related to the non-extremality parameter β. Indeed, from (2.11) we have

that

cosh ca =

√

1 +
2β2e−2A(0)

κ2Q2
, (2.16)

such that the limit cosh ca = 1 corresponds to β = 0, as one expects from the action (2.7).

Rediscovering spacelike 0-branes. For spacelike branes (ǫ = k = −1) we find

e−A =
κQ√
2β

cosh(βu+ ca) , e−B =
1

β
sinh(βu) . (2.17)

Once again, shifting the origin of the u-axis, the integration constant in the equation for

B has been put to zero. Using the coordinate transformation

τ =
κQ cosh(βu+ ca)√

2 sinhβu
, x =

√
2β

κQ cosh ca
z , (2.18)

– 6 –
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the solution then takes the following form

ds2 = G(τ) dx2 −G(τ)−1dτ2 + τ2dH
2
2 , Fτx =

Q

τ2
, (2.19)

with

G(τ) = 1 − 2
sinh(ca)κQ√

2τ
− Q2κ2

2τ2
, (2.20)

where we introduced the metric for the hyperboloid dH
2
2 = dΣ2

−1. Again, this solution is

asymptotically flat. Moreover, we see that this reduces to the metric for the S0-brane of [2]

after a constant rescaling of x and τ . Taking the limit β → 0, the metric is easily seen to

describe flat space in Milne coordinates.

Addition of a dilaton. Before we proceed to the case of p-branes in arbitrary dimensions

let us first consider the coupling of the vector field to a dilaton, as this is the generic sit-

uation in supergravity theories. The action describing four-dimensional Einstein-Maxwell-

dilaton theory is

S =

∫

dx4√−g
(

1

2κ2
R− 1

2
(∂φ)2 − 1

4
eaφF 2

)

. (2.21)

The Ansatz for electrical solutions is now given by Fuz = Qe2A−B+C−aφ. In the gauge

B = C the effective action becomes

S =

∫

du 2Ḃ2 − 2Ȧ2 − κ2φ̇2 + 2ǫ ke2B − ǫ κ2Q2e2A−aφ . (2.22)

It turns out to be convenient to define new variables A1 and φ1

A1 = A− a

2
φ , φ1 =

a

κ2
A+ φ . (2.23)

With these new variables the Bogomol’nyi form is obvious and similar to the previous

case without a dilaton. Writing the action as a sum of squares, we now introduce three

constants β1, β2 and β3

S =

∫

du 2
(

Ḃ+
√

ǫke2B + β2
1

)2
− 2

∆

(

Ȧ1 +

√

ǫ∆
κ2

2
Q2e2A1 + β2

2

)2

−κ
2

∆
(φ̇1−β3)

2, (2.24)

where ∆ = 1 + (a2/2κ2).

In this case the equivalent of the constraint (2.6) implies that only two of the three

integration constants are independent

2β2
1 − 2

∆
β2

2 − κ2

∆
β2

3 = 0 . (2.25)

The BPS equations are the same as before apart from the extra equation φ̇1 = β3.

When the solutions for A,B and φ are plugged into the Ansatz one reproduces the

familiar dilatonic black hole solution [29]. One then also notices that the two indepen-

dent β-parameters appear in a fixed combined way as to effectively form one deformation

parameter.

– 7 –
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3. (−1)-branes in D dimensions

A (−1)-brane couples electrically to a 0-form gauge potential, χ, known as the axion. The

worldvolume is zero-dimensional and, in the case of a timelike (−1)-brane, this implies that

the whole space is Euclidean since it is entirely transverse. The action is

S =

∫

dxD√−g
(

R− 1

2
(∂φ)2 + ǫ

1

2
ebφ(∂χ)2

)

. (3.1)

Note the ‘wrong sign’ kinetic term for the axion when ǫ = +1, which is normal for Euclidean

theories. The (−1)-brane Ansatz is

ds2D = ǫe2C(z)dz2 + e2A(z)dΣ2
k , φ = φ(z) , χ = χ(z) . (3.2)

If we consider the axion equation of motion, ∂µ(
√−ggµνebφ∂νχ) = 0, then the solution is

of the form

χ̇ = Q e−bφ . (3.3)

The one-dimensional effective action that reproduces the equations of motion for A and φ

is

S =

∫

dz
(D − 1)(D − 2)

κ2

(

Ȧ2e(D−1)A−C+ǫke(D−3)A+C
)

−e(D−1)A−C φ̇2−ǫeC−(D−1)A−bφQ2 .

(3.4)

As we discussed before this form differs from that obtained by direct substitution of the

Ansatz into the original action (appendix A). The field C is not propagating and we can

choose it at will; the gauge C = (D − 1)A is obviously useful. As before we must consider

the constraint that arises from varying the action with respect to C. In this gauge, the

BPS form of the action is then equal to

S =

∫

dz
(D − 1)(D − 2)

κ2

(

Ȧ+
√

ǫke2(D−2)A + β2
1

)2
−
(

φ̇−
√

ǫQ2e−bφ + β2
2

)2
, (3.5)

supplemented with the constraint

(D − 1)(D − 2)

κ2

(

Ȧ2 − ǫke−2(D−2)A
)

− φ̇2 + ǫe−bφQ2 = 0. (3.6)

The constraint equation tells us that there is only one effective deformation parameter

since

β2
2 =

(D − 1)(D − 2)

κ2
β2

1 . (3.7)

We now first solve the BPS equations with vanishing deformation parameters for k =

ǫ = 1. If we define the coordinate ρ via dρ = −e(D−1)Adz, then the BPS equation,

Ȧ = −e(D−1)A, implies that ρ = eA + c. Shifting ρ such that c = 0 we find that the metric

describes the Euclidean plane in spherical coordinates

ds2D = dρ2 + ρ2dΩ2
D−1 . (3.8)

– 8 –
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The solutions for the scalar fields are

e
b

2
φ = − Qb

2(D − 2)
ρ−D+2 + e

b

2
φ∞ , χ = −2|Q|

bQ
(e−

b

2
φ − e−

b

2
φ∞) + χ∞ . (3.9)

This is indeed the extremal instanton solution, see for instance [30, 31]. For non-zero β

the solution becomes (in the frame C = (D − 1)A)

e(2−D)A =
1

β1
sinh[(D − 2)β1 z + c1] , (3.10)

e−
b

2
φ(z) =

Q

β2
sinh

(

β2b

2
z + c2

)

, χ(z) = − 2

bQ

√

Q2e−bφ + β2
2 + c3 , (3.11)

where c1, c2 and c3 are arbitrary constants of integration. These solutions correspond to

the super-extremal instantons that were constructed in [31, 32].

Finally, the time-dependent S(−1) brane solution (with k = ǫ = −1) that was first

constructed in [33] can be rederived (again in the frame C = (D − 1)A)

e(2−D)A =
1

β1
sinh[(D − 2)β1 t+ c1] , (3.12)

e−
b

2
φ(t) =

Q

β2
cosh

(

β2b

2
t+ c2

)

, χ(t) = − 2

bQ

√

Q2e−bφ − β2
2 + c3 . (3.13)

4. p-branes in arbitrary dimensions

Let us now consider the following theory in d = D + p+ 1 dimensions

S =

∫

ddx
√−g

{

1

2κ2
R− 1

2
(∂φ)2 − 1

2(p + 2)!
eaφF 2

p+2

}

. (4.1)

The corresponding p-brane solutions can all be reduced to (−1)-brane solutions in D

dimensions via reduction over their flat worldvolumes. Therefore we should be able to

reproduce the BPS bounds and the BPS solutions using the (−1)-brane calculation of the

previous section.

A typical p-brane Ansatz takes the form

ds2 = e2αϕ(z)ds2D + e2βϕ(z) ηǫ
mndymdyn , φ = φ(z) ,

Ap+1(z) = χ(z) dy1 ∧ dy2 ∧ . . . ∧ dyp+1 , (4.2)

where ds2D is the D-dimensional metric (3.2) and ηǫ = diag(−ǫ,+1, . . . ,+1). The constants

α and β are given by

α =

√

p+ 1

2(D + p− 1)(D − 2)
, β = −

√

D − 2

2(D + p− 1)(p + 1)
. (4.3)

We now reduce the Ansatz (4.2) over the worldvolume coordinates y, obtaining a lower-

dimensional Ansatz of the form (3.2). The equivalent reduction of the action (4.1) leads to

the D-dimensional action

S =

∫

dDx
√−g

(

1

2κ2
R− 1

2
(∂ϕ)2 − 1

2
(∂φ)2 + ǫ

1

2
eaφ+2(D−2)αϕ(∂χ)2

)

. (4.4)
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The effective one-dimensional action for the lower-dimensional solution then contains an

extra decoupled dilaton when compared to instanton calculation of the previous section,

S =

∫

dz
(D − 1)(D − 2)

κ2

(

Ȧ2 + ǫke2(D−2)A
)

− ˙̃
φ2 − ˙̃ϕ2 − ǫe−bφ̃Q2 , (4.5)

where b2 = a2 + 4(D − 2)2α2 and the original scalars ϕ and φ are given by

φ =
1

b
(aφ̃− 2(D − 2)αϕ̃) , ϕ =

1

b
(2(D − 2)αφ̃ + aϕ̃) . (4.6)

Up to total derivatives, the BPS-form of the action is then given by

S =

∫

dz
(D − 1)(D − 2)

κ2

(

Ȧ+
√

ǫke2(D−2)A + β2
1

)2
−
(

˙̃
φ+

√

ǫQe−bφ̃ + β2
2

)2
− ( ˙̃ϕ+ β3)

2 ,

(4.7)

where only two of the three deformation parameters β1, β2 and β3 are independent due to

the condition coming from the constraint equation:

(D − 1)(D − 2)

κ2
β2

1 − β2
2 − β2

3 = 0 . (4.8)

The solutions to the BPS equations for A and φ̃ can be found in the previous section in

equations (3.10)–(3.13), whereas the solution for the extra field ϕ̃ is trivial, ϕ̃(z) = −β3z.

From our Ansatz (4.2) and the field redefinition (4.6) we can immediately read of the

timelike and spacelike brane solutions in d dimensions. We do not discuss these solutions

as they have been discussed in the literature in numerous places.

5. p-branes with type II deformations

In general there are two types of black deformations of extremal p-branes that one can

consider [34]. Type I deformations are defined by the metric

ds2 = e2A(r)d~x2
p+1 + e2B(r)

(

dr2 + r2dΩ2
)

. (5.1)

The p-brane is said to have a type I deformation if

X ≡ (p+ 1)A+ (D − p− 3)B 6= 0 . (5.2)

Since the extremal (−1)-brane geometry is the Euclidean plane we read of thatA = βϕ,B =

αϕ such that the relation between α and β (4.3) immediately gives X = 0. From the

previous section we can infer that the cases with X 6= 0 can be obtained by uplifting

non-extremal instanton solutions.

However there exist other types of deformations of extremal branes which are not

contained in the analysis of the previous section. These deformations are labelled type II

and the resulting metric breaks the worldvolume symmetry ISO(p, 1) down to IR× ISO(p)

ds2 = e2A(r)
(

−e2f(r)dt2 + dxidxi
)

+ e2B(r)
(

e−2f(r)dr2 + r2dΩ2
)

, (5.3)
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where X = 0, with X defined in (5.2). For black holes and instantons these two types of

deformations coincide.

The approach of writing the effective action as a sum of squares is similar to that of

the instanton discussions in the previous section, and is based on dimensionally reducing

the brane over its worldvolume. Notice that although some worldvolume symmetries are

broken we can still carry out the reduction as the translation symmetry is not broken.

It should be clear that it is possible to reduce type II-deformed branes over their

wordvolume if the shape moduli are not all truncated. In order to proceed we shall therefore

keep a single shape modulus, denoted by T . It appears as follows in the metric Ansatz

ds2 = e2αϕds2D + e2βϕ
(

−e−T dt2 + ep−1T dxidx
i
)

. (5.4)

The effective action (4.7) then gets the extra term −p+1
2p

(Ṫ + β4)
2 and the corresponding

constraint equation implies the following relation amongst the deformation parameters

(D − 1)(D − 2)

κ2
β2

1 − β2
2 − β2

3 − p+ 1

2p
β2

4 = 0 . (5.5)

Now the various possibilities of choosing non-zero β’s correspond to the possible defor-

mations. If all β’s are non-zero we have a solution with combined type I and type II

deformations. The purely type II deformed solution can be found by choosing β2 = β3 = 0

with the other two β’s non-zero. Again as these solutions can be easily found in the

literature we will not write them explicitly here.

The message here is twofold. Firstly, we have shown that the various types of defor-

mations of p-branes can be found from the first-order formalism. Secondly, this technique

is clearly beneficial in finding various (complicated) black brane solutions, and is simple

in comparison with the existing techniques of solving the coupled second-order differential

equations.

6. Discussion

In this note we have shown that all known brane-type solutions of an Einstein-dilaton-

p-form theory can be found from decoupled first-order equations, thereby extending the

results of [9] to arbitrary dimensions and time-dependent cases. By brane-type solutions

we mean solutions with a space-time Ansatz given by (1.2) and (1.3). The key point is

that these solutions depend on one coordinate and therefore can be constructed from a

one-dimensional effective action, as was first discussed for black holes in [35]. If this one-

dimensional effective action can be written as sums and differences of squares we arrive

at first-order equations à la Bogomol’nyi. That this is possible for some extremal timelike

brane solutions was to be expected as they can be seen as supersymmetric solutions when

embedded into an appropriate supergravity theory.

In [9] the question was raised as to whether these deformed BPS equations could also be

understood from the point of view of supersymmetry. One may imagine that the bosonic

Lagrangian (1.1) could be embedded into different (non-standard) supergravity theory

for which the non-extremal solutions preserve some fraction of supersymmetry. However,
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there is in fact an obstruction to even defining Killing spinors which implies that the non-

extremal solutions cannot preserve supersymmetry. Of course one should repeat the same

calculations of [9] for the case of p-branes with p > 0, as well as for type I and type II

deformations, but we believe that the same negative answer will be found.

We consider the application of these ideas to time-dependent brane solutions (S-branes)

as a less trivial extension of [9]. One possible way to understand why it was to be expected

that a similar first-order formalism exists for time-dependent branes stems from the known

fact that non-extremal stationary branes can be analytically continued to time-dependent

solutions, something that is impossible for extremal branes [34]. As explained in the intro-

duction, this first-order formalism for time-dependent p-branes is the natural generalisation

of the so-called pseudo-BPS equations for FLRW-cosmologies [15, 16].

We did not completely exhaust all possible brane solutions in our analysis, as we

did not consider branes with co-dimension less than three. When the co-dimension is

one, the stationary branes are domain walls and the time-dependent branes are FLRW-

cosmologies, for which the fake supergravity and pseudo-supersymmetry formalism is by

now well developed. However, the case of branes with co-dimension two is not included as

these solutions depend on one complex coordinate rather than on one real coordinate.

An alternative, interesting, way to understand the existence of first-order equations

for stationary and time-dependent brane solutions is given by the approach of mapping

p-branes to (−1)-branes. The latter solutions are solely carried by the metric and scalar

fields. It is then easy to observe that the scalar fields only depend on one coordinate and

describe a geodesic motion on moduli space. In fact, for many cases this moduli space is a

symmetric space, for which it is known that the geodesic equation of motion can easily be

integrated to first-order equations (see for instance [36]). From this we expect that there

exist BPS equations for all extremal and non-extremal black holes in theories which have

a symmetric moduli space after reduction over one dimension [37].
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A. Construction of the effective action

As always one has to be careful when plugging an Ansatz into the action in order to obtain

an effective action.

The action contains the following term

SE =

∫

d4xf(ψi)(Fuz)
2 . (A.1)

Here we denoted the other independent fields appearing in the action by ψi. For Einstein-

Maxwell theory, we have {ψi} = {gµν} and f(gµν) = −1
2

√−gguugzz. We continue the

discussion keeping ψi general. To calculate the contribution of this term to the field equa-

tions for the fields ψi, the vector field strengths have to be kept fixed when varying w.r.t.

the other fields ψi. This gives

δSV

δψi

∣

∣

∣

Fuz

=
δf

δψi
FuzFuz (A.2)

What happens if we were to plug in the electrical Ansatz? The EOM are then solved by

Fuz(ψi) = f−1(ψi)Q , (A.3)

where Q is a constant (the electrical charge). Now the electric field strength becomes a

function of ψi. This is in contrast to (A.1), where it had to be considered as an independent

field in the action when calculating the EOM. Due to this fact, an effective action cannot

be obtained by simply plugging the Ansatz into SV . We have to flip the sign of SV too

Seff
E = −SE(Fuz(ψi)) =

∫

d4x(−f−1Q2) . (A.4)

The reason is that now we keep Q, rather than the field strength Fuz, fixed while varying

w.r.t. ψi. In particular, we see that we gain the correct contribution (A.2) to the EOM for

ψi by varying the effective action

δSeff
E

δψi

∣

∣

∣

Q
= +f−2 δf

δψi
Q2 =

δSE

δψi

∣

∣

∣

Fuz

. (A.5)

For a magnetic Ansatz we have

Fz1z2
= Pǫz1z2

, (A.6)

where we chose coordinates zi on the slice Σk. The contribution to the action for a magnetic

configuration is

SM =

∫

d4xg(ψi)(Fz1z2
)2 . (A.7)

Plugging in this ansatz (A.6) will not change the EOM for the fields ψi, because now the

field strength does not depend on the ψi.
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